Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation.

نویسندگان

  • Patrick T Fueger
  • Deanna P Bracy
  • Carlo M Malabanan
  • R Richard Pencek
  • David H Wasserman
چکیده

Muscle glucose uptake (MGU) is determined by glucose delivery, transport, and phosphorylation. C57Bl/6J mice overexpressing GLUT4, hexokinase II (HK II), or both were used to determine the barriers to MGU. A carotid artery and jugular vein were catheterized for arterial blood sampling and venous infusions. Experiments were conducted in conscious mice approximately 7 days after surgery. 2-Deoxy-[3H]glucose was administered during rest or treadmill exercise to calculate glucose concentration-dependent (Rg) and -independent (Kg) indexes of MGU. Compared with wild-type controls, GLUT4-overexpressing mice had lowered fasting glycemia (165 +/- 6 vs. 115 +/- 6 mg/dl) and increased Rg by 230 and 166% in the gastrocnemius and superficial vastus lateralis (SVL) muscles under sedentary conditions. GLUT4 overexpression was not able to augment exercise-stimulated Rg or Kg. Whereas HK II overexpression had no effect on fasting glycemia (170 +/- 6 mg/dl) or sedentary Rg, it increased exercise-stimulated Rg by 82, 60, and 169% in soleus, gastrocnemius, and SVL muscles, respectively. Combined GLUT4 and HK II overexpression lowered fasting glycemia (106 +/- 6 mg/dl), increased nonesterified fatty acids, and increased sedentary Rg. Combined GLUT4 and HK II overexpression did not enhance exercise-stimulated Rg compared with HK II-overexpressing mice because of the reduced glucose concentration. GLUT4 combined with HK II overexpression resulted in a marked increase in exercise-stimulated Kg. In conclusion, control of MGU shifts from membrane transport at rest to phosphorylation during exercise. Glucose transport is not normally a significant barrier during exercise. However, when the phosphorylation barrier is lowered by HK II overexpression, glucose transport becomes a key site of control for regulating MGU during exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Glucose Uptake by the Working Muscle of Conscious Mice: DISTRIBUTION OF CONTROL BETWEEN TRANSPORT AND PHOSPHORYLATION

2 Skeletal muscle glucose uptake (MGU) is determined by glucose delivery, transport, and phosphorylation. The control of MGU can be distributed amongst all three steps and may change in response to different physiological conditions. C57Bl/6J mice overexpressing GLUT4, hexokinase II (HK II), or both were used to determine the barriers to MGU. A carotid artery and jugular vein were catheterized ...

متن کامل

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Functional limitations to glucose uptake in muscles comprised of different fiber types.

Skeletal muscle glucose uptake requires delivery of glucose to the sarcolemma, transport across the sarcolemma, and the irreversible phosphorylation of glucose by hexokinase (HK) inside the cell. Here, a novel method was used in the conscious rat to address the roles of these three steps in controlling the rate of glucose uptake in soleus, a muscle comprised of type I fibers, and two muscles co...

متن کامل

Control of exercise-stimulated muscle glucose uptake by GLUT4 is dependent on glucose phosphorylation capacity in the conscious mouse.

Previous work suggests that normal GLUT4 content is sufficient for increases in muscle glucose uptake (MGU) during exercise because GLUT4 overexpression does not increase exercise-stimulated MGU. Instead of glucose transport, glucose phosphorylation is a primary limitation of exercise-stimulated MGU. It was hypothesized that a partial ablation of GLUT4 would not impair exercise-stimulated MGU w...

متن کامل

Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice.

Physical exercise promotes glucose uptake into skeletal muscle and makes the working muscles more sensitive to insulin. To understand the role of insulin receptor (IR) signaling in these responses, we studied the effects of exercise and insulin on skeletal muscle glucose metabolism and insulin signaling in mice lacking insulin receptors specifically in muscle. Muscle-specific insulin receptor k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 286 1  شماره 

صفحات  -

تاریخ انتشار 2004